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Comparison of Mode-Matching and Differential
Equation Techniques in the Analysis

of Waveguide Transitions
William A. Huting, Member, IEEE, and Kevin J. Webb, Member, IEEE

Abstract —The solution of the continuous waveguide transition prob-
lem can be obtained by discretizing tbe boundary and applying mode
matching or by using a system of ordinary differential equations. Both
approaches iuvolve approximate representations of the boundary. When
using tbe differential equation approach, it was found necessary to
consider the transition as several sections in series in order to avoid
nnmerical instabilities. When this is done, one may cascade rising a
generalized scattering matrix approach or a generalized A?CD matrix
method. Results are shown comparing the accuracy of the boundary
discretization approach and the differential equation approach for the
Marie transducer and for linear transitions of various Iengths in rectan-
gular waveguide. Experimental results are also given for the Marie
transducer.

I. INTRODUCTION

NUMERICAL approaches to the continuous waveguide
transition analysis and design problems have been stud-

ied for the past 20 or so years (e.g., [1]–[5]). Recently, the
authors used a novel moment method technique to solve a
system of ordinary differential equations describing such a
transition [4], [5]. The present paper, which is basically an
extension of the work in [4] and [5], includes a comparison of
the differential equation method with an approach which
approximates the transition as a series of discrete steps and
subsequently applies mode matching, an application of these
techniques to linear rectangular transitions, a discussion of
the validity of the differential equations and associated
boundary conditions, and experimental and numerical results
for the Marie rectangular TE,0 to circular TEOI mode trans-
ducer. Also included are new results regarding the sensitivity
of the computed solution to the choice of cascading formula-
tion when, as is a fairly common practice [3]–[5], a transition
is analyzed as several sections in series in order to avoid
numerical instabilities.

II. METHODS OF SOLUTION

The system of differential equations used in this paper is

based on the assumption that the transverse portion of the

electromagnetic field in a transition can be written as a sum
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of the uniform waveguide mode functions corresponding to
the local transition cross section:

it(x, y,z)= ~ ~,,(z) en(x, y,z) (1)
m=l

Ht(x, y,z)= f Im(z)hm(x, y,z) (2)
fn=l

where z denotes the direction of propagation, and the pa-
rameters ~~( z ) and 1,.(z) are known respectively as the
equivalent voltages and the equivalent currents. A system of
ordinary differential equations which specifies V.(z) and
l~(z ) was given by Reiter in 1959 [6] and methods of solution
are discussed at some length in [3]–[5]. These equations are

(4)

Both TE and TM modes are included in (3) and (4). The
variable ~n denotes the wavenumber of the rnth mode, the
variable Z,. denotes the wave impedance of the m th mode,
and the “transfer coefficients” Tmn (which describe coupling
between the two modes m and n) are given by [6]

(5)

The integration in (5) is over the local waveguide cross
section, S(z). If the system of equations in (3) and (4) is
truncated and then solved for the portion of the transition
between z = z, and z = z,+ ~, one may specify numerical
values for the associated generalized ABCD matrix:

where the dimension of the square submatrices A,, 111,c,,

and D, is equal to the number of modes (propagating and

evanescent) included in the solution. Cascading the results

for two adjacent portions of the transition may be accom-

plished by simple multiplication of the two ABCD matrices

[4], [5] or by translating these two matrices into generalized

scattering matrices and then linking them together [3]. One

goal of this paper is to compare the efficacy of these two
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Fig. 1. Boundary discretization geomet~.

cascading approaches. The ABCD matrix approach is com-
putationally less intensive, and therefore initially more at-
tractive, than the scattering matrix approach.

One well-known alternative to solving the differential
equatiom is to discretize the boundav and to apply mode
matching. The bounda~ discretization geometry used in this
paper is depicted in Fig. 1. The two uniform waveguides in
this figure have cross sections equivalent to the transition
cross sections at z and z + AL. As shown in [7], the differ-
ence equation for the equivalent voltages and currents is

~m(z + AL) = COS
(Wscos(w)

(// )en(z) .em(z + AJ5)d.x~Y ~.(.z)
s

/3mAL m

()
– Cos —

()
~ jZn( z) sin *

2 ~=1

(JJ )en(z) e,n(z + AL) d.x~Y Z.(Z)
s

&AL

()
+jZn(z+AL)sin ~

“n;l* sin(*)
n

‘(J )en(z) .en(z+AL)d.x@ ~.(z)
s

&AL

()
– jZ,n(z + AL) sin —

2’

().5 CO+’
~=1

(/J )en(z) .em(z + AL)~~Y I.(z) (7)
s

where the area of integration, S, is equal to the intersection
of s(z) and S(z + AL). Rewriting (7) as a sum of Powers of
AL and retaining only terms of order (AL)2 or lower, one

obtains

Vm(z + AL)

=Vm(z)– jALZm(z)&(z)Im(z)

( )
+AL ~ ~fe~n(z) .e,n(z)dxdy Vn(z)

n=l S

,(/%?44)2
-(AL) ~ ~,,(z)

pm(z)
– j(AL)2Z~(z)~Z,,,(z)

+ qn:l(JJe&(’) ”en(z)hdY)vn(z)
s

(

pn(z) p,n(z)
–j(AL)2 S Z.(Z)~ +zm(z)T

~=1 )

(/.7 )
e~(z)”en(z)dxdy Z.(z) (8)

s

where the primes refer to differentiation with respect to z. A
similar equation exists for 1~. It is easily seen that, in the
limit of vanishing AL, (8) reduces to (3). Therefore, one
might expect that the boundary discretization method should
converge to the same solution as does the differential equa-
tion method. However, convergence rates can be affected by
the (AL)2 terms and these terms do, in fact, differ between
(8) and some of the techniques for solving (3) and (4), e.g.,
the Runge-Kutta method [7]. Similar difference equations
can be derived when traveling waves are considered instead
of the equivalent voltages and currents of (1) and (2), and
further details are given in [7]. The mode-matching approach
used in this paper [8, ch. 5] is a modification of the method
described by Carin, Webb, and Weinreb [9], and the scatter-
ing matrix cascading technique described by Chu and Itoh
[10] is used to link together the large number of junctions
used to approximate a transition.

Finally, it should be noted that although (3) and (8)

indicate that the differential equation method and the

boundary discretization method should converge to a com-

mon solution, the two methods are based on somewhat

different representations of the transition boundav. The

differential equation approach assumes a perfectly smooth

boundary while the mode-matching approach uses a stepped

boundary. It may not be correct to say that the stepped

boundary is a valid approximation of the smooth boundary.

This is well illustrated if one attempts to approximate the

diagonal of a unit square as a. series of steps: the approxi-

mate boundary will have a length equal to 2 independent of

the number of steps whereas the actual diagonal has a length

equal to V. Nonetheless, in spite of these two rather differ-

ent boundary representations, (3) and (8) appear to indicate

that the two methods are equivalent. This can perhaps be

explained as follows. Most standard methods for solving (3)

can be written as difference equations similar to (8). Any

difference equation approach for solving (3) will include
terms of (A L)2 and higher, and for nonzero AL., these

higher order terms will represent a distortion of the smooth

system of(3). This distortion vanishes as AL vanishes, result-
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ingin the equivalence of (3) and (8). Yet another interesting

issue is whether or not (1) and (2) are appropriate for

nonuniform waveguides. This will be discussed at the end of

Section IV.

III. MARIE TRANSDUCER ANALYSIS

In this section, the numerical techniques described above

are applied to an X-band model of the Marie rectangular

TE1(J to circular TE{I1 mode transducer [11] and the resultant

data are compared with experimental results. This device,

which has been informally described as “the best transition

to TEOI° [121, is shown in Fig. 2 and the desired electric field

lines at various locations are shown in Fig. 3. (The circular

taper portion in Fig. 2 is not included in some models.)

A detailed study of the Marie transducer was performed

by Saad, Davies, and Davies in the 1970’s [1], [2], [13]. One

difference between their work and ours is that they numeri-

cally implemented Solymar’s small coupling procedure [14],

while we use the methods described in [4] and [5]. A prereq-

uisite for analyzing a continuous waveguide transition is to

obtain the mode functions in (1) and (2). These modal

solutions and the associated eigenvalues are essential in

determining the coefficients in Reiter’s equations [4], [6]. As

noted in [13], these tasks must be accomplished numerically

when one considers an irregularly shaped device such as the

Marie transducer. The publicly available software we used is

described in [15] and [16], and further details regarding our

particular implementation can be found in [8]. In the circular

taper portion of the transition, the coefficients for the differ-

ential equations may be determined analytically [17].

The generation of numerical data describing the transmis-

sion and reflection properties of this device will now be

described. These data will be compared with measurements

performed on two Marie transducers connected to each

other by a 35 in. long metallic circular waveguide, i.e.,

launching and detecting at the two rectangular ports. Each

Marie transducer was 46.35 in. long with circular taper

portions each 11 in. long. The circular ends of the Marie

transducer were 1.18 in. in radius and the rectangular ends

were standard WR-90 waveguide. The numerical data were

acquired using four schemes:

Approach 1: In the irregularly shaped portions of the
Marie transducer, only the desired rectangular TEIO–cir-
cular TEOI mode is included in the expansions (1) and (2),
and in the most narrow part of the circular taper, only the
desired TEOI mode was considered. Only a single mode was
considered because previous work [4] indicates that consider-
ing only modes near or above cutoff is sufficiently accurate
while reducing computational complexity. All of these “one-
mode” sections were analyzed using the Runge–Kutta tech-
nique to solve the truncated system of differential equations
[4]. In a middle 1 in. portion of the taper, where the un-
wanted TEOZ mode goes through cutoff, both this mode and
the TEOI mode were included and the moment method of [4]
was used. The reason for selecting this technique is that, as
observed in [3] and [4], evanescent modes cause numerical
problems, and the results of [4] seem to indicate that the
moment method technique has better stability characteristics
than do some conventional techniques (e.g., the Runge–Kutta
method and an iterative integration technique [4], [5]). Fi-
nally, in the widest part of the taper, where both modes were
above cutoff, the numerically less expensive Runge–Kutta

&&
Fig. 2, The Marie transducer.

@ox
Fig. 3. Desired electric field lines for the Marie transducer.

technique was used. As in [4], cascading was accomplished
through the simple multiplication of the generalized ABCD
matrices representing adjacent cross sections. First, the 4 X 4
TEOI–TE02 ABCD matrices representing the circular wave-
guide and the wider portions of the circular tapers of the two
Marie transducers were combined to produce a 4 x 4 ABCD

matrix. The four elements of this matrix which describe TEOI
to TEOI interaction were used to produce a 2 X 2 ABCD

matrix which was then cascaded with the “single-mode”
sections. This new 2 X 2 matrix was then translated into a
2X 2 scattering matrix. For further details, see [8, ch. 4].

In order to verify these calculations, measurements were
performed using a Wiltron 360 network analyzer between 11
and 12 GHz. These tests included a calibration procedure
which allowed normalization of the test data in the presence
of imperfect connections, cables, etc., between the unit un-
der test and the network analyzer input and output ports.
(To further establish the validity of these tests, all measure-
ments were repeated several times and tests were performed
on known devices. We believe that the ISzl Idata are accurate
to within + 0.1 dB and ]Slll to within t 10.0 dB. For further
details, see [7].) Fig. 4 shows numerical and experimental
data for the scattering parameter Szl for the two Marie
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Fig. 4. Experimental and numerical I,S211for system consisting of two
Marie transducers connected by a circular waveguide. These data were
generated using the ABCD matrix cascading formulation (approach 1 in
text).
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Fig. 5. Experimental and numerical ISIII for system consisting of two
Marie transducers connected by a circular waveguide. These data were
generated using the ABCD matrix cascading formulation (approach 1 in
text).

transducers and the connecting circular waveguide. Fig. 5
shows the results for S1l. The experimental data indicate
very low but observable dissipative loss.

Approach 2: The second method of analysis differed from
approach 1 in only one respect: cascading. The individual
4x 4 ABCD matrices were converted into 4 x 4 scattering
matrices be~or-e cascading. Chu and Itoh have published a
method for cascading two devices represented by generalized
scattering matrices and connected by a uniform waveguide
[10]. In cascading two adjacent portions of the transition, this
method was used with the length of the uniform waveguide
set equal to zero in the computer program. Once the “two-
mode” sections were cascaded, the four elements of the
generalized scattering matrix representing TEOI to TEOI in-
teraction were used to produce a 2 X 2 scattering matrix
which was then cascaded with the “single-mode” sections.
Cascading such 2X 2 matrices is a trivial task, and was done
according to [18, pp. 150–151]. Figs. 6 and 7 show the data
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Fig. 6. Experimental and numerical I,S21I for system consisting of two
Marie transducers connected by a circular waveguide. These data were
generated using the scattering matrix cascading formulation (thin line:
approaches 2, 3 in text; dots: approach 4 in text).
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Fig. 7. Experimental and numerical ISIII for system consisting of two
Marie transducers connected by a circular waveguide. These data were
generated using the scattering matrix cascading formulation (thin line:
approaches 2, 3 in text; dots: approach 4 in text).

generated using this approach along with the experimental
data from Figs. 4 and 5.

Approach 3: The third approach differed from approach 2
in only one respect: the middle part of the circular taper was
analyzed using boundary discretization and mode matching.
Five modes were considered at five junctions and the resul-
tant scattering matrix was converted into a two-mode scatter-
ing matrix (by simple truncation) before cascading with the
other “two-mode” sections, Results obtained using this ap-
proach were identical to those of approach 2, i.e., Figs. 6
and 7.

Approach 4: Boundary discretization and mode matching
were used to analyze the entire circular taper. Nine modes
were used at each junction and the taper was approximated
by 50 junctions. A 2 x 2 scattering matrix was extracted from
the results and cascaded with the irregularly shaped “single-
mode” sections. These results were very close to those of
approaches 2 and 3, i.e., the thin lines in Figs. 6 and 7.
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By examining Figs. 4–7, it is seen that, at least for this
example, the computed solution is insensitive to whether the
differential equation technique or the mode-matching tech-
nique is used. However, this is not true regarding the choice
of cascading method. One might conclude that the ABCD
matrix multiplication technique used in approach 1 provided
a more accurate solution than the scattering matrix cascad-
ing technique used in the other three approaches because
the numerical and experimental curves are more closely
coincident in Figs. 4 and 5 than in Figs. 6 and 7. However, it
should be noted that these calculations do not take conduc-
tive losses into account; a “good” solution would therefore
show insertion losses slightly less than in the experiment. If
observable losses are expected, the scattering matrix cascad-
ing data of Figs. 6 and 7 appear more credible than the
approach 1 data of Figs. 4 and 5. Further, in this case the
scattering matrix formulation involved manipulating 2 X 2
submatrices with condition numbers in the range 100 to 102,
while the generalized ABCD matrix formulation involved
manipulating 4 X 4 matrices with condition numbers of 105.
To sum up, for this particular example, the scattering matrix
formulation utilized smaller and better conditioned matrices
and yielded physically more reasonable results than does the
ABCD matrix formulation.

A comparison of computer times for the moment method
program and the mode-matching program used in the above
examples indicates no substantial advantage from the view-
point of computational efficiency. A similar conclusion is
reached when these programs are used to analyze a simple
rectangular taper [8]. It should be noted that neither of these
two programs has yet been optimized with respect to either

run time or storage. The Runge–Kutta technique is by far

the least expensive of the methods considered here, and, as

indicated in [4], it is sufficiently accurate in many cases.

IV. CONTINUOUS VERSUS DISCRETE FORMULATIONS

In Section III, our particular implementations of the dif-

ferential equation approach and the boundary discretization

approach yielded virtually identical results when applied to

the circular taper portion of a Marie transducer. This taper

varies slowly with respect to wavelength. It also has been

reported that the two approaches yield identical data for a

slowly varying rectangular taper [8] and several extremely

slowly varying circular tapers [3]. In this section, we show

that the routines are also consistent for rapidly varying

transitions. Our treatment starts with the rectangular taper

of Fig. 8, with the taper length L as a parameter. This taper

is analyzed for extremely short lengths L using the previ-
ously described techniques. The L = O case, which is simply

an abrupt discontinuity, is analyzed using a single-step

mode-matching routine. (The differential equation technique

clearly will not work for L = O.) The idea is to see whether or

not, for diminishing lengths L, the waveguide transition data

approach the abrupt discontinuity results and to compare the

differential equation data with the boundary discretization

data for these nonzero lengths L.

Fig. 8 shows a transition between two rectangular wave-

guides with different heights. For the dimensions given, we

shall consider the band between 1.0 and 1.8 GHz, where only

the TEIO mode is capable of propagation. The abrupt (L = O)
case was analyzed using two methods, namely, a nine-mode

mode-matching solution and a simple procedure which used

one I

*T

1.625
1

~—6.,00—+ ~ ~
z= OZ=L

Fig. 8. Steep rectangular waveguide taper discussed in Section IV.
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Fig. 9. Computed reflection coefficient for the steep taper of Fig. 7 for
the abrupt discontinuity (L= O)case. The solid line was generated using
mode matching with nine modes. The dots were generated using [19, fig.
5.26-3].

data from a figure in Marcuvitz’s book [19, Fig. 5.26-3]. Fig. 9
shows the dominant mode reflection coefficient Sll obtained
by these two methods, and the two sets of data are coincid-

ent. Subsequently, results were generated for the lengths

L = 0.05A0, 0.025~o, O.OOIAO, and 10-9A0, where A“ is the

free-space wavelength at l. O-GHZ. These results were gener-
ated taking into account the nine lowest modes and using
two analytical techniques. First, boundary discretization and
mode matching were applied with 100 junctions between
z = o and z = L. Second, the Galerkin method version of the

moment method technique [4] was used with two cascaded
sections between z = O and z = L and with five triangle
weighting functions per section. For each length, the two sets
of curves were indistinguishable, and these curves are shown
in Fig. 10. The results for L = 10 ‘9A0 are very close to the

L = O results of Fig. 9 generated using a nine-mode, single-

step mode-matching routine.

For the above short transition example, the differential
equation technique and the boundary discretization tech-
nique are in agreement, just as they were for gradual tapers.
Indeed, consistency between these two methods is what one
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Fig. 10. Computed reflection coefficient for the steep taper of Fig. 7
for the cases L = 0.05A0 (dots), L = 0.025A0 (dash), L = O.OOIAO
(chaindot), and L =10- ‘A. (chaindot), where AO is the free-space
wavelength at 1.0 GHz. Each of these four sets of data was generated
using the differential equation method and the boundary discretization
method (nine modes). The two methods yielded identical results.

Fig. 11. Waveguide transition geometry for electromagnetic boundary
conditions.

would expect after examining (3) and (8). We think this
agreement between the two techniques might be theoreti-
cally important. This is because, as observed in [201, the
magnetic field expansion (2) cannot satisfy the transition wall
boundary condition exactly. At the wall, the magnetic field
must satisfy (Fig. 11)

H“m=O. (9)

The individual terms of the expansion satisfy

h~. n=O. (lo)

(The boundary condition for the electric field is satisfied by
the individual terms of (l).) If the transition is a slowly
varying (i.e., nearly uniform) one, (9) and (10) are approxi-
mately the same, but for rapidly varying tapers, the unit
vectors m and n become less coincident, the approximation
breaks down, and one might question the validity of the
differential equation method. However, for the steep taper
in Fig. 8, the differential equation method yields the same
results as the boundary discretization technique and these
two identical sets of results converge to the abrupt disconti-
nuityy solution for diminishing values of L. Moreover, consis-
tency among these same techniques when applied to a steep
circular waveguide taper has also been reported [7]. Thus,
the differential equation formulation appears to be suitable
even for rapidly varying tapers. One possible explanation for
this may be found in an idea advanced by Unger [20],
namely, that the expansion (2) is valid, that it converges to
the correct field values inside but not on the boundary, and
that this expansion therefore suffers a discontinuity on the
boundary. Recently, it has been argued that the mathematics
of the derivation of Reiter’s equations are fully consistent
with the existence of an expansion with these attributes
[8, pp. 3-17].

V. CONCLUSION

Several waveguide transitions have been analyzed using
two different methods: (i) discretizing the transition bound-
ary and using mode matching and (ii) solving a system of
ordinaty differential equations. For gradual transitions, the
two methods lead to identical results and use comparable
amounts of computer time (assuming the same number of
modes are used in both cases). For extremely steep transi-
tions (excluding the step transition), our results still indicate
agreement between the two methods. Our results also indi-
cate that the scattering matrix cascading method (previously
used in [3]) leads to results which are more credible than
those obtained when cascading is performed by multiplying
generalized ABCD matrices. The differential equation tech-
nique may be more generally applicable for continuous tran-
sitions in that artificial discontinuities are not introduced
and an arbitrary number (including zero) of evanescent modes
can be introduced.
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